skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Khee-Gan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The Local Universe ($D< 120$ Mpc) has been intensely studied for decades, with highly complete galaxy redshift surveys now publicly available. These data have driven density reconstructions of the underlying matter density field, as well as constrained simulations that aim to reproduce the observed structures. In this paper, we introduce a dispersion measure (DM) model that makes use of this detailed knowledge of our Local Universe within $D< 120$ Mpc. The model comprises three key components: (i) the DM from the Milky Way’s halo and the intragroup medium (up to 3.4 Mpc), derived from the H estia simulations, a series of constrained hydrodynamic simulations designed to reproduce our Local Group; (ii) the DM contribution from the large-scale intergalactic medium beyond the Local Group (3.4 Mpc $< D< 120$ Mpc), calculated using the Hamlet reconstructed matter density field; and (iii) the individual DM contributions from Local Universe galaxy haloes and clusters based on data from the Two Micron All Sky Survey Galaxy Group Catalogue and the NASA/IPAC Extragalactic Data base. This comprehensive model will be made available as a python package. As the most realistic model to date for DM in the local volume, it promises to improve the constraints of DM contributions from the intergalactic medium and circumgalactic medium of fast radio bursts (FRBs), thereby enhancing the accuracy of cosmic baryon distribution calculations based on DM analysis of FRBs. 
    more » « less
    Free, publicly-accessible full text available March 26, 2026
  2. Abstract This paper presents the first public data release (DR1) of the FRB Line-of-sight Ionization Measurement From Lightcone AAOmega Mapping (FLIMFLAM) survey, a wide field spectroscopic survey targeted on the fields of 10 precisely localized fast radio bursts (FRBs). DR1 encompasses spectroscopic data for 10,468 galaxy redshifts across 10 FRB fields withz < 0.4, covering approximately 26 deg2of the sky in total. FLIMFLAM is composed of several layers, encompassing the “wide” (covering ∼degree or >10 Mpc scales), “narrow” (several arcminutes or ∼Mpc), and integral field unit (“IFU”; ∼arcminute or ∼100 kpc) components. The bulk of the data comprises spectroscopy from the Two Degree Field-AAOmega instrument on the 3.9 m Anglo-Australian Telescope, while most of the narrow and IFU data was achieved using an ensemble of 8–10 m class telescopes. We summarize the information on our selected FRB fields, the criteria for target selection, methodologies employed for data reduction, spectral analysis processes, and an overview of our data products. An evaluation of our data reveals an average spectroscopic completeness of 48.43%, with over 80% of the observed targets having secure redshifts. Additionally, we describe our approach to generating angular masks and calculating the target selection functions, setting the stage for the impending reconstruction of the matter density field. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Abstract The dispersion measure of fast radio bursts (FRBs), arising from the interactions with free electrons along the propagation path, constitutes a unique probe of the cosmic baryon distribution. Their constraining power is further enhanced in combination with observations of the foreground large-scale structure and intervening galaxies. In this work, we present the first constraints on the partition of the cosmic baryons between the intergalactic medium (IGM) and circumgalactic medium (CGM), inferred from the FLIMFLAM spectroscopic survey. In its first data release, the FLIMFLAM survey targeted galaxies in the foreground of eight localized FRBs. Using Bayesian techniques, we reconstruct the underlying ∼Mpc-scale matter density field that is traced by the IGM gas. Simultaneously, deeper spectroscopy of intervening foreground galaxies (at impact parametersb≲r200) and the FRB host galaxies constrains the contribution from the CGM. Applying Bayesian parameter inference to our data and assuming a fiducial set of priors, we infer the IGM cosmic baryon fraction to be f igm = 0.59 0.10 + 0.11 and a CGM gas fraction of f gas = 0.55 0.29 + 0.26 for 1010M≲Mhalo≲ 1013Mhalos. The mean FRB host dispersion measure (rest-frame) in our sample is DM host = 90 19 + 29 pc cm 3 , of which DM host unk = 69 19 + 28 pc cm 3 arises from the host galaxy interstellar medium (ISM) and/or the FRB progenitor environment. While our currentfigmandfgasuncertainties are too broad to constrain most galactic feedback models, this result marks the first measurement of the IGM and CGM baryon fractions, as well as the first systematic separation of the FRB host dispersion measure into two components: arising from the halo and from the inner ISM/FRB engine. 
    more » « less
  4. Abstract The repeating fast radio burst FRB 20190520B is an anomaly of the FRB population thanks to its high dispersion measure (DM = 1205 pc cm−3) despite its low redshift ofzfrb= 0.241. This excess has been attributed to a large host contribution of DMhost≈ 900 pc cm−3, far larger than any other known FRB. In this paper, we describe spectroscopic observations of the FRB 20190520B field obtained as part of the FLIMFLAM survey, which yielded 701 galaxy redshifts in the field. We find multiple foreground galaxy groups and clusters, for which we then estimated halo masses by comparing their richness with numerical simulations. We discover two separateMhalo> 1014Mgalaxy clusters atz= 0.1867 and 0.2170 that are directly intersected by the FRB sight line within their characteristic halo radiusr200. Subtracting off their estimated DM contributions, as well that of the diffuse intergalactic medium, we estimate a host contribution of D M h o s t = 430 220 + 140 or 280 170 + 140 p c c m 3 (observed frame), depending on whether we assume that the halo gas extends tor200or 2 ×r200. This significantly smaller DMhost—no longer the largest known value—is now consistent with Hαemission measures of the host galaxy without invoking unusually high gas temperatures. Combined with the observed FRB scattering timescale, we estimate the turbulent fluctuation and geometric amplification factor of the scattering layer to be F ˜ G 4.5 11 ( pc 2 km ) 1 / 3 , suggesting that most of the gas is close to the FRB host. This result illustrates the importance of incorporating foreground data for FRB analyses both for understanding the nature of FRBs and to realize their potential as a cosmological probe. 
    more » « less
  5. Abstract Studies of low-redshift galaxy clusters suggest the intracluster medium (ICM) has experienced nongravitational heating during the formation phase of the clusters. Using simple phenomenological heating prescriptions, we simulate the effect of this preheating of the nascent ICM in galaxy protoclusters and examine its effect on Lyαforest tomographic maps. We analyze a series of cosmological zoom-in simulations of protoclusters within the framework of the Lyαtransmission−dark matter (DM) density distribution. We find that the more energy is injected into the proto-ICM atz= 3, the more the distribution at high DM density tilts toward higher Lyαtransmission. This effect has been confirmed in both low-resolution simulations adopting a preheating scheme based on entropy floors, as well as in higher-resolution simulations with another scheme based on energy floors. The evolution of the slope of this distribution is shown to vary with redshift. The methodology developed here can be applied to current and upcoming Lyαforest tomographic survey data to help constrain feedback models in galaxy protoclusters. 
    more » « less
  6. Abstract The FLIMFLAM survey is collecting spectroscopic data of field galaxies near fast radio burst (FRB) sight lines to constrain key parameters describing the distribution of matter in the Universe. In this work, we leverage the survey data to determine the source of the excess extragalactic dispersion measure (DM), compared to Macquart relation estimates of four FRBs: FRB20190714A, FRB20200906A, FRB20200430A, and FRB20210117A. By modeling the gas distribution around the foreground galaxy halos and galaxy groups of the sight lines, we estimate DMhalos, their contribution to the FRB DMs. The FRB20190714A sight line shows a clear excess of foreground halos which contribute roughly two-thirds of the observed excess DM, thus implying a sight line that is baryon dense. FRB20200906A shows a smaller but nonnegligible foreground halo contribution, and further analysis of the intergalactic medium is necessary to ascertain the true cosmic contribution to its DM. FRB20200430A and FRB20210117A show negligible foreground contributions, implying a large host galaxy excess and/or progenitor environment excess. 
    more » « less
  7. null (Ed.)